The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS–Ser-633 phosphorylation and nitric oxide production
نویسندگان
چکیده
Hyaluronan (HA) in the endothelial glycocalyx serves as a mechanotransducer for high-shear-stress-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. Low shear stress (LSS) has been shown to contribute to endothelial inflammation and atherosclerosis by impairing the barrier and mechanotransduction properties of the glycocalyx. Here we focus on the possible role of hyaluronidase 2 (HYAL2) in LSS-induced glycocalyx impairment and the resulting alterations in eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVECs). We show that LSS strongly activates HYAL2 to degrade HA in the glycocalyx. The dephosphorylation of eNOS-Ser-633 under LSS was triggered after HA degradation by hyaluronidase and prevented by repairing the glycocalyx with high-molecular weight hyaluronan. Knocking down HYAL2 in HUVECs protected against HA degradation in the glycocalyx by inhibiting the expression and activity of HYAL2 and further blocked the dephosphorylation of eNOS-Ser-633 and the decrease in NO production in response to LSS. The LSS-induced dephosphorylation of PKA was completely abrogated in HYAL2 siRNA-transfected HUVECs. The LSS-induced dephosphorylation of eNOS-Ser-633 was also reversed by the PKA activator 8-Br-cAMP. We thus suggest that LSS inhibits eNOS-Ser-633 phosphorylation and, at least partially, NO production by activating HYAL2 to degrade HA in the glycocalyx.
منابع مشابه
Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells.
AIMS Fibroblast growth factor 21 (FGF21) is a powerful endocrine hormone modulating glucose and lipid metabolism and represents a promising drug for type 2 diabetes. The present study was to determine the effect of FGF21 on high glucose-induced damage and dysfunction in endothelial cells. METHODS The protein expression of β-klotho was examined in human umbilical vein endothelial cell (HUVECs)...
متن کاملShear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism.
Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelia...
متن کاملInsulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis.
Insulin stimulates endothelial NO (nitric oxide) synthesis via PKB (protein kinase B)/Akt-mediated phosphorylation and activation of eNOS (endothelial NO synthase) at Ser-1177. In previous studies, we have demonstrated that stimulation of eNOS phosphorylation at Ser-1177 may be required, yet is not sufficient for insulin-stimulated NO synthesis. We therefore investigated the role of phosphoryla...
متن کاملEffect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat
Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کامل